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Abstract

We obtain the exact analytical expression for the weights in the Hodrick-
Prescott (HP) filter. We then use the expression for the weights to build a
fast algorithm with computational improvements by a factor of up to fifty
times in samples typical in macroeconomics. Our expression for the weights
gives insights about the properties of the HP filter and we use it to propose
an end-point bias correction of the filter. We illustrate the bias correction on
the estimation of the National Bureau of Economic Research (NBER) recession
dates and find that our estimates are closer to the NBER dates when compared
to the usual HP filter estimates. Finally, we show that our derivations for the
weights provide a methodology for finding the exact weights of the more general
Whittaker-Henderson filters of which the HP filter is a particular case.

Keywords: Hodrick-Prescott filter; Whittaker-Henderson filter; exact weights;
end-point bias; trend; cyclical component; turning point; smoothing parameter; Sher-
man-Morrison.

1 Introduction

In the past few decades, there has been an increasing interest among economists in
techniques for detrending data and for representing their underlying trends. Without
any consensus about which model represents the trend best, a popular alternative to
model-based detrending is to use smoothing filters. Probably the filter that raised the
most interest in economics is the Hodrick-Prescott filter (Hodrick, R. and Prescott,
E. (1997)). The HP filter has, for a long period, been central for business cycle re-
search; see King, R. G. and Rebelo, S. T. (1999) survey paper. Despite its widespread

∗I thank Karim Abadir for suggesting me this topic and for his helpful comments. I also thank
Eric Beutner, Alastair Hall, Alain Hecq, João Madeira, Jean-Pierre Urbain, Sébastien Van Bellegem
and the seminars participants at the University of Maastricht and CORE Louvain-la-Neuve for their
helpful comments. Correspondence to Adriana Cornea-Madeira, University of York, Heslington
East, YO10 5GD York, UK; e-mail address: adriana.cornea-madeira@york.ac.uk.
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use1, the explicit formulae for the weights of the HP filter have not been previously
obtained. The lack of explicit formulae for the weights limits the understanding of
the characteristics of the detrended data, of the end-points estimates of the trend and
of the choice of the smoothing parameter; see Baxter, M. and King, R. G. (1999);
King, R. G. and Rebelo, S. T. (1993). Moreover, the HP filter can generate spu-
rious cyles/correlations in the filtered data with negative impact on estimation and
inference; see Christiano, L. and den Haan, W. (1996); Cogley, T. and Nason, J. M.
(1995); Harvey, A. C. and Jaeger, A. (1993); Singleton, K.J. (1988). Knowledge of
the weights in the HP filter can help alleviate these problems.

In this paper we address several gaps in the literature. We first derive the explicit
formulae for the weights of the HP filter. We then use the formulae to propose
a solution for reducing the bias of the trend estimates at the end of the sample.
Using U.S. real GDP from 1947:Q1 to 2013:Q2, our solution provides estimates of
the recession dates which are identical or much closer to the NBER recession dates,
when compared with the usual estimates of the HP filter. In addition, we develop an
algorithm for implementing the filter, which is up to fifty times faster with sample
sizes typical in economics. Finally, we show that the rationale of our derivations
for the weights of the HP filter, provide a methodology to obtain the weights of the
more general Whittaker-Henderson filters.2 Other than the contributions mentioned
here, our formulae can also be used to derive analytically the moments needed in
the estimation of dynamic stochastic general equilibrium (DSGE) models in order to
reduce the computation time (Gorodnichenko, Y. and Ng, S. (2010)), and to propose
a solution for spurious cycles and moments by reducing the end-point bias or the fat-
tailedness/skewness of statistics of interest (Christiano, L. and den Haan, W. (1996)).

Given a vector of time series y = (y1, . . . , yn)′, the HP filter decomposes each yi
into a trend component τ i and a cyclical component ci, i.e. yi := τ i + ci, i = 1, . . . , n.
The trend component is estimated as τ̂ = (τ̂ 1, . . . , τ̂n)′ through the solution of the
constrained minimization problem

min
τ1,··· ,τn

n∑
i=1

(yi − τ i)2 + α
n−1∑
i=2

(τ i+1 − 2τ i + τ i−1)
2 , (1.1)

where α is a positive smoothing parameter that penalizes variability in the trend

1Recent articles that apply the HP filter include Angeloni, I. and Faia, E. (2013); Bai, Y. and
Zhang, J. (2010); Bengui, J., Mendoza, E. G. and Quadrini, V. (2013); Boldea, O. and Hall, A. R.
(2013); Broner, F., Didier, T., Erce, A. and Schmukler, S. L. (2013); Champagne, J. and Kurmann,
A. (2013); Coibion, O. and Gorodnichenko, Y. (2011); Corradi, V., Distaso, W. and Mele, A. (2013);
Donaldson, J. B., Gershun, N. and Giannoni, M. P. (2013); Duca, M. L. and Peltonen, T. A. (2013);
Edmond, C. and Weill, P.-O. (2012); Elsby, M. W and Shapiro, M. D. (2012); Lu, S.-S. (2013);
Lugauer S. (2012); Hansen, P. R., Lunde, A. and Nason, J. M. (2011); Gospodinov, N. and Ng,
S. (2013); Kryvtsov, O. and Midrigan, V. (2013); Markiewicz, A. (2012); Mandelman, F. S. and
Zlate, A. (2012); Moscarini, G. and Postel-Vinay, F. (2012); Ohanian, L. E. and Raffo, A. (2012);
Ramadorai, T. (2012); Ravn, M. O., Schmitt-Grohé, S. and Uribe, M. (2012); Robin, J.-M. (2011);
Tsyrennikov, V. (2013); Schmitt-Grohé, S. and Uribe, M. (2012).

2Whittaker, E. T. (1923) was the first who suggested the idea of smoothing filters and there has
been a large subsequent literature on filters of this type; see Kitagawa, G. and Gersch , W. (1996).
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component.
The unique solution to the minimization problem in (1.1) is

τ̂ = (In + αF )−1 y, (1.2)

where In is an n× n identity matrix and F is the pentadiagonal n× n matrix

F :=



1 −2 1

−2 5 −4
. . .

1 −4 6
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 6 −4 1
. . . −4 5 −2

1 −2 1


,

n ≥ 5, where undisplayed elements are zero. The larger is the value of α, the smoother
τ̂ is. If α = 0, then τ̂ = y. If α → ∞, then τ̂ is the ordinary least square estimate
of τ . Both the trend component and the cyclical component estimates are weighted
averages of the y’s, i.e.

τ̂ i =
n∑
j=1

pi,jyj, ĉi = yi − τ̂ i, i = 1, . . . , n. (1.3)

Knowledge of the formulae for the weights pi,j is important in understanding the
properties of the trend/cyclical component; in developing methods for estimating α;
in solving the end-of-sample bias of the filter; in implementing more easily the filter
in software; in reducing computational time; in computing the moments of the HP
filtered model variables; etc. As previously mentioned, the exact formulae for pi,j have
not been previously derived in the literature. Approximations to it were obtained,
for example, by McElroy, T. (2008) who worked with the spectral factorization of the
HP filter. The main drawback of McElroy’s result is that his formulae provide good
approximations to pi,j away from the end-points of the sample and only for large n.
More recently, De Jong, R. M. and Sakarya, N. (2013) have derived a new representa-
tion for pi,j using basis functions. In this paper we obtain the exact formulae for pi,j.
Our formulae are not only exact, but are also simpler. This is the first contribution
of our paper.

The second contribution of our paper is to show that (In + αF )−1 can be com-
puted using only a few matrices of size m×m, where m := bn/2c is the least integer
of n/2. This can reduce the computational time by a factor of up to fifty times. Re-
cently, economists have had access to data at higher frequencies (daily and intraday
data), hence they have to analyze large samples; see Adrian, T. and Rosenberg, J.
(2008); Harris, R. D. F., Evarist, S. and Fatih, Y. (2011), etc. However, even with
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data at smaller frequencies (monthly, quarterly), the estimation of DSGE models has
to rely on the computation of the moments of the HP filtered data and HP filtered
model variables over a grid of values for the parameters in the model, which is time
consuming; see Gorodnichenko, Y. and Ng, S. (2010). As a consequence, processing
the data in timely manner without exceeding memory capacity is still challenging de-
spite the continuing progress in computer technology. To meet this challenge we fully
exploit the mathematical structure of the weights in order to develop an algorithm for
the HP filter that can be implemented in software. Our results can also be applied in
other areas such as communications, surveillance applications, network traffic, where
it is known that sample sizes are very large.

The third contribution of this paper is a solution to the end-point bias of the HP
filter using our formulae for the weights. Because not all the trend components in
(1.1) are treated equally in the minimization problem, the HP filter is less efficient at
the beginning and at the end of the sample; see Baxter, M. and King, R. G. (1999);
Christiano, L. and den Haan, W. (1996); Kaiser, R. and Maravall, A. (1999); King,
R. G. and Rebelo, S. T. (1993); Mise, E., Kim, T.-H. and Newbold, P. (2005). We
illustrate our solution on the estimation of the turning points dated by NBER. Our
solution can be adapted to other type of applications, such as the reduction of the
end-point bias in the computation of the moments in the generalized method of mo-
ments (GMM) estimation and related statistics; see Christiano, L. and den Haan, W.
(1996).

The final contribution of our paper is to show that the computations for deriving
the exact formulae for pi,j, provide a methodology for computing the weights in more
general filters where the trend component is estimated as the solution of the following
minimization problems

min
τ1,··· ,τn

n∑
i=1

(yi − τ i)2 + α
n−r∑
i=1

(
∆rτ j)

2, (1.4)

and

min
τ1,··· ,τn

n∑
i=1

(yi − τ i)2 + α1

n−1∑
i=1

(∆τ j)
2 + · · ·+ αr

n−r∑
i=1

(∆rτ j)
2 , (1.5)

where α, α1, . . . , αr are positive smoothing parameters and ∆ is the forward difference
operator: ∆τ j = τ j+1 − τ j. These filters are known as Whittaker-Henderson filters
and have been proposed by Whittaker, E. T. (1923) and Henderson, R. (1924) for
applications in actuarial finance. The filter in (1.5) can be seen as a discrete spline
smoothing where α1, . . . , αr correspond to a specification of the choice of number and
location of knots in the spline-fitting process. The HP filter is a special case of (1.4)
with r = 2, where ∆2τ j = τ j+2 − 2τ j−1 + τ j, and was popularized in economics by
Hodrick, R. and Prescott, E. (1997).

This paper is organized as follows. In Section 2, we derive the formula for the
exact weights in the HP filter. In Section 3 we introduce the results about the
reduction in the computation time of the HP filter and illustrate them in a Monte
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Carlo simulation study. In Section 4, the solution to the end of sample bias is proposed
and its performance is illustrated with the estimation of the turning points in U.S.
Section 5 generalises the derivation of the HP filter weights to the filters (1.4) and
(1.5). Section 6 concludes. The proofs are relegated to the Appendix. We use the
notation in Abadir, K. M. and Magnus, J. R. (2002). Links to the Matlab programs
containing our results are provided in each section.

2 The exact weights of the HP filter

In order to obtain the exact inverse of In + αF , note that

F = QQ− gg′ − Pngg′Pn, (2.1)

where Q is a tridiagonal matrix of size n× n ,

Q :=



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−1 2


, (2.2)

Pn is a permutation matrix of size n× n,

Pn :=


1

. .
.

. .
.

1

 , (2.3)

and g := (−2, 1,0′)′ . The pentadiagonal matrix QQ has full rank, while gg′ and
Pngg

′Pn have rank 1 which allows us to obtain a simple expression for (In + αF )−1

by applying the Sherman-Morrison formula (Abadir, K. M. and Magnus, J. R. (2005),
p.248) twice.

Note that Q has distinct eigenvalues

γj = 2− 2 cos

(
πj

n+ 1

)
, j = 1, . . . , n, (2.4)

and corresponding eigenvector xj = (x1j, . . . , xnj)
′ with

xi,j =

(
2

n+ 1

)1/2

sin

(
πij

n+ 1

)
, i, j = 1, . . . , n. (2.5)
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Theorem 2.1 below gives the exact inverse of In + αF in terms of only α, n and
the eigenvalues/eigenvectors of Q. We denote by T the n× n matrix of eigenvectors
of Q with typical element xi,j. Also let

Λ := diag (λ1, . . . , λn) , (2.6)

with
λj = 1 + αγ2j , (2.7)

the eigenvalues of In + αQQ, j = 1, . . . , n. Denote by k1 and k2 two scalars defined
as

k1 :=
2α

1− 2α
n∑

j=1,odd

(2x1,j − x2,j)2 λ−1j
, (2.8)

k2 :=
2α

1− 2α
n∑

j=1,even

(2x1,j − x2,j)2 λ−1j
. (2.9)

Finally let K1 and K2 denote two n× n matrices with typical element for row i
and column j,

(2xi,1 − xi,2) (2x1,j − x2,j)
λiλj

, i, j = 1, . . . , n, (2.10)

for i + j even and j odd in K1, and i + j even and j even in K2, the rest of the
elements being zero. We are now in the position to give the following theorem.

Theorem 2.1.

(In + αF )−1 = TΛ−1T + k1TK1T + k2TK2T , (2.11)

where Λ−1 := diag
(
λ−11 , . . . , λ−1n

)
.

The proof is relegated to the Appendix. The link to the Matlab program for Theo-
rem 2.1 is here: https://dl.dropboxusercontent.com/u/113649213/HPTheorem1vsOldHP.m.

Corollary 2.1. Let τ̂ i =
∑n

j=1 pi,jyj be the trend component estimate for observation
yi, i = 1, . . . , n. The weights pi,j are given by

pi,j =
n∑
s=1

xi,sxs,j
λs

(2.12)

+ k1

n∑
t=1,odd

n∑
s=1,odd

xi,s
(2x1,s − x2,s)(2x1,t − x2,t)

λsλt
xt,j (2.13)

+ k2

n∑
t=1,even

n∑
s=1,even

xi,s
(2x1,s − x2,s)(2x1,t − x2,t)

λsλt
xt,j, (2.14)

where k1 and k2 are as in (2.8) and (2.9).
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The proof follows by simply computing the matrix multiplications in Theorem
2.1. Since

xi,j = xj,i, (2.15)

the matrices T , K1 and K2 are symmetric. Hence (In + αF )−1 is also symmetric.
Also, note that

xi,j = (−1)j−1xn+1−i,j (2.16)

which together with (2.15) imply that

xi,j = (−1)i−1xi,n+1−j, i, j = 1, . . . , n. (2.17)

By (2.16) and (2.17) we have that xi,sxs,j = xn+1−i,sxs,n+1−j, s = 1, . . . , n. Hence

pi,j = pn+1−i,n+1−j, (2.18)

property which indicates that TΛ−1T , TK1T , TK2T and (In + αF )−1 are cen-
trosymmetric (symmetric about their center) and hence bisymmetric (symmetric
about the main diagonals).

Moreover, for large n and away from the end points of the sample, we have the
following corollary for the terms in pi,j.

Corollary 2.2. Pointwise in i > 0, j > 0 and α > 0, as n→∞,
(a) the limit of the constants in (2.8) and (2.9) is

lim
n→∞

k1 = lim
n→∞

k2 := k, (2.19)

where

k := 2α

(
1− 4α

∫ 1

0

16 (sin(rπ))4 (sin(2rπ))2

1 + 16α (sin(rπ))4
dr

)−1
; (2.20)

(b) the limit of the term in (2.12) is

lim
n→∞

n∑
s=1

xi,sxs,j
λs

= 2

∫ 1

0

sin(irπ) sin(jrπ)

1 + 16α (sin(rπ))4
dr; (2.21)

(c) the limit of the terms in (2.13) and (2.14) is

lim
n→∞

n∑
t=1,odd

n∑
s=1,odd

xi,s
(2x1,s − x2,s)(2x1,t − x2,t)

λsλt
xt,j (2.22)

= lim
n→∞

n∑
t=1,even

n∑
s=1,even

xi,s
(2x1,s − x2,s)(2x1,t − x2,t)

λsλt
xt,j

= 1024

∫ 1

0

∫ 1

0

sin(2irπ) (sin(rπ))4(
1 + 16α (sin(rπ))4

)
× (sin(uπ))4 sin(2juπ)(

1 + 16α (sin(uπ))4
) dr du.
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See the Appendix for the proof.
The matrix K1 (K2) has the odd (even) rows and columns equal to zero. The

nonzero elements of these matrices are weighted by k1 and k2 which are identical only
for n → ∞, as it can be seen from (2.19). Furthermore, the second term in (2.20)
converges to a constant as α→∞,

lim
α→∞

α

∫ 1

0

16 (sin(rπ))4 (sin(2rπ))2

1 + 16α (sin(rπ))4
dr =

∫ 1

0

(sin(2rπ))2 dr =
1

2
. (2.23)

Hence, from (2.20) and (2.23) it follows that

lim
α→∞

lim
n→∞

k1 = lim
α→∞

lim
n→∞

k2 =∞. (2.24)

Also, as α→∞, the limit of (2.21) is

lim
α→∞

∫ 1

0

sin(irπ) sin(jrπ)

1 + 16α (sin(rπ))4
dr = 0, (2.25)

pointwise in i > 0 and j > 0, away from the end-points of the sample. Moreover,
away from the end-points of the sample, by l’Hôpital’s rule, (2.22) converges to zero
as α and n→∞. Thus, as n and α become larger, the weights become smaller.

3 Reducing the computation time in the HP filter

Theorem 2.1 and Corollary 2.1 allow us to greatly reduce the computation time of the
weights in the HP filter by working with matrices of size m×m, where m := bn/2c is
the least integer of n/2, instead of matrices of size n×n. To illustrate this we denote
by Pm a similar permutation matrix to Pn given in (2.3), but of size m×m, and give
the following corollaries.

Corollary 3.1. The matrix TΛ−1T from (2.11) can be written as

TΛ−1T =

(
V1 V2

PmV2Pm PmV1Pm

)
, for n even, (3.1)

TΛ−1T =

 V1 v V2

v′ vm+1,m+1 v′Pm
PmV2Pm Pmv PmV1Pm

 , for n odd, (3.2)

where V1 is a m×m matrix with typical element given by (2.12), i, j = 1, . . . ,m; V2 is
a m×m matrix with typical element given by (2.12), i = 1, . . . ,m and j = m+1, . . . n
if n is even or j = m + 2, . . . , n if n is odd; v is a column vector of length m with
typical element as in (2.12) with i = 1, . . . ,m and j = m + 1; vm+1,m+1 is given by
(2.12) where i, j = m+ 1.

The proof follows from Weaver, J. R. (1985), the corollary being a simple conse-
quence of the fact that TΛ−1T is centrosymmetric.
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Corollary 3.2. The matrix TK1T from (2.11) can be written as

TK1T =

(
D DPm

PmD
′ PmDPm

)
, for n even, (3.3)

TK1T =

 D d DPm
d′ dm+1,m+1 d′Pm

PmD
′ Pmd PmDPm

 , for n odd, (3.4)

where D is a m ×m matrix with typical element given by (2.13), i, j = 1, . . . ,m; d
is a column vector of length m with typical element as in (2.13), where i = 1, . . . ,m
and j = m+ 1; dm+1,m+1 is the term in (2.13) with i, j = m+ 1.

The proof of this corollary follows from Weaver, J. R. (1985) and is a consequence
of the fact that TK1T is centrosymmetric. In the upper-right corners of (3.3) and
(3.4) we have a permutation of D. This follows from (2.16) and (2.17) by noticing
that for s odd, xj,s = xs,n+1−j. As a consequence, in (2.13) when τ̂ i is computed, yj
and yn+j−1 receive the same weight, i, j = 1, . . . , n.

Corollary 3.3. The matrix TK2T from (2.11) can be written as

TK2T =

(
E −EPm

−PmE′ PmEPm

)
, for n even, (3.5)

TK2T =

 E e −EPm
e′ em+1,m+1 −e′Pm

−PmE′ −Pme PmEPm

 , for n odd, (3.6)

where E is a m ×m matrix with typical element given by (2.14), i, j = 1, . . . ,m; e
is a column vector of length m with typical element as in (2.14), where i = 1, . . . ,m
and j = m+ 1; em+1,m+1 is the term in (2.14) with i, j = m+ 1.

The proof follows from Weaver, J. R. (1985) and is a consequence of the fact that
TK2T is centrosymmetric. In the upper-right corners of (3.5) and (3.6) we have a
permutation of −E. This follows from (2.16) and (2.17) by noticing that for s even,
xj,s = −xs,n+1−j. As a consequence, in (2.14) when τ̂ i is computed, yj and yn+j−1
receive the same weight, but of opposite sign, i, j = 1, . . . , n.

An important consequence of Corollaries 3.1, 3.2 and 3.3 is the following simpli-
fication of Theorem 2.1.

Corollary 3.4. For n even,

(In + αF )−1 =

(
V1 +D +E V2 + (D −E)Pm

Pm (V2Pm +D′ −E′) Pm (V1 +D +E)Pm

)
, (3.7)

and for n odd,

(In + αF )−1 =

 V1 +D +E a V2 + (D −E)Pm
a′ a z′Pm

Pm (V2Pm +D′ −E′) Pmz Pm (V1 +D +E)Pm

 , (3.8)

where a := v + d+ e, z := v + d− e, a := vm+1,m+1 + dm+1,m+1 + em+1,m+1.
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Corollary 3.4 suggests that (In + αF )−1 which is of size n× n, can be computed
using only the matrices Pm,V1,V2,D,E which are of (smaller) size m × m. The
formulae for computing these matrices are given in the next corollary where we use
the following notation. We denote by � the Hadamard product. Let T1 be a m×m
matrix with typical element given in (2.5), but with i, j = 1, . . . ,m. Let J denote a
m ×m matrix given by J := (ı,−ı, ı, . . . , ı,−ı), where ı is a column vector of ones
of size m× 1. Using (2.15), (2.16) and (2.17), we have an alternative representation
of the matrix T in terms of a 2× 2 block matrix for n even,

T =

(
T1 (T1 � J)′Pm

PmT1 � J (−1)lPm (T1 � J)′Pm � J

)
, (3.9)

and in terms of a 3× 3 matrix for n odd,

T =

 T1 x1 (T1 � J)′Pm
x′1 xm+1,m+1 x′2

PmT1 � J x2 (−1)lPm (T1 � J)′Pm � J

 , (3.10)

where x1 is a m×1 column vector with typical element given in (2.5) with i = 1, . . . ,m
and j = m+ 1; x2 is a m× 1 column vector with typical element given in (2.5) with
i = m+ 2,m+ 3 . . . , 2m and j = m+ 1; the scalar xm+1,m+1 is computed as in (2.5)
with i, j = m+ 1 and

l :=

{
2, if n = 4j or n = 4j − 1, with j ∈ N,
1, for the other values of n.

(3.11)

Note that T is not centrosymmetric due to (2.16) and (2.17).
Let b denote the m× 1 vector with typical element given by cos (πj/(n+ 1)), j =

1, . . . ,m. Since cos (πj/(n+ 1)) = − cos (π(n+ 1− j)/(n+ 1)), then the eigenvalues
of In + αQQ are given by the elements of the n× 1 vector, for n even

λ =

(
λ1

λ2

)
:=

(
1 + 4α(1− b)� (1− b)

1 + 4α(1 + Pmb)� (1 + Pmb)

)
. (3.12)

The matrix Λ from (2.6) can also be written in partitioned form

Λ =

(
diag(λ1) Om,m

Om,m diag(λ2)

)
, for n even, (3.13)

Λ =

 diag(λ1) 0m,1 Om,m

01,m λm+1 01,m

Om,m 0m,1 diag(λ2)

 , for n odd, (3.14)

where λm+1 is computed as in (2.7) with j = m+ 1.
Let G1 be the m×m matrix with typical element for row s column t given by

(2x1,2s+1 − x2,2s+1)(2x1,2t+1 − x2,2t+1)

λ2s+1λ2t+1

, s, t = 0, . . . ,m− 1n even, (3.15)
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where 1n even is the indicator function which equals 1 if n is even, 0 if n odd. Let G2

be the m×m matrix with typical element for row s column t given by

(2x1,2s − x2,2s)(2x1,2t − x2,2t)
λ2sλ2t

, s, t = 1, . . . ,m. (3.16)

Finally, let M1 be the m ×m matrix with typical element xi,2j+1, i = 1, . . . ,m,
j = 0, . . . ,m − 1n even. Let M2 be the m × m matrix with typical element xi,2j,
i, j = 1, . . . ,m. We are now in the position to give the following corollary.

Corollary 3.5. (a) The matrices V1, V2, D, E from (3.1), (3.3), (3.5) are given by

V1 :=

{
W1, n even,
W1 + x1λ

−1
m+1x

′
1, n odd,

(3.17)

V2 :=

{
W2, n even,
W2 + x1λ

−1
m+1x

′
2, n odd,

(3.18)

D := M1G1M
′
1, (3.19)

E := M2G2M
′
2, (3.20)

with

W1 := T1 (diag (λ1))
−1 T1 + (T1 � J)′Pm (diag (λ2))

−1PmT1 � J , (3.21)

W2 := T1 (diag (λ1))
−1 (T1 � J)′Pm (3.22)

+ (−1)l (T1 � J)′Pm (diag (λ2))
−1Pm (T1 � J)′Pm � J ,

where l is defined in (3.11).
(b) For n odd, v, d and e from (3.2), (3.4) and (3.6) are given by

v := T1 (diag (λ1))
−1 x1 + x1λ

−1
m+1xm+1,m+1 (3.23)

+ (T1 � J)′Pm (diag (λ2))
−1 x2.

Let i = 1, . . . ,m and j = m+ 1, then d has typical element

m∑
t=0

m∑
s=0

xi,2s+1
(2x1,2s+1 − x2,2s+1) (2x1,2t+1 − x2,2t+1)

λ2s+1λ2t+1

x2t+1,j, (3.24)

and e has typical element

m∑
t=1

m∑
s=1

xi,2s
(2x1,2s − x2,2s) (2x1,2t − x2,2t)

λ2sλ2t
x2t,j. (3.25)

(c) The constants k1 and k2 from (2.8) and (2.9) are given by

k1 :=
2α

1− 2α
m−1n even∑

j=0

(2x1,2j+1 − x2,2j+1)
2 λ−12j+1

, (3.26)
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k2 :=
2α

1− 2α
m∑
j=1

(2x1,2j − x2,2j)2 λ−12j

. (3.27)

The proof is omitted. It is a simple consequence of the fact that the expressions
for V1 and V2 follow by multiplying by blocks the matrix TΛ−1T , where T and Λ
are given in (3.9) and (3.13) for n even, and in (3.10) and (3.14) for n odd. When
n is odd, k1, M1 and G1 have to be computed accordingly, as indicated in (3.15)
and (3.26). The link to the Matlab program for Corollaries 3.4 and 3.5 is here:
https://dl.dropboxusercontent.com/u/113649213/OurHPvsOldHP.m.

3.1 Simulation study

We end this section with an illustrative simulation study meant to highlight the com-
putational gains of Corollaries 3.4 and 3.5. We generate samples {yi}ni=1 of sizes
n = 100, 500, 1000, 2000, 5000, 10000, where yi = τ i + ci, with τ i = τ i−1 +
ui, a random walk, ui ∼i.i.d. N(0, 1) and ci ∼i.i.d. N(0, 1). We avoid fixing the
smoothing parameter to an arbitrary value (about which it seems to be no con-
sensus; see Backus, D.K. and Kehoe, P. J. (1992); Baxter, M. and King, R. G.
(1999); Giorno, C.L., Richardson, P., Roseveare, D. and van den Noord, P. (1995);
Ravn, M. O. and Uhlig, H. (2002)). Instead we estimate it by the generalized cross
validation (GCV) method introduced by Craven, P. and Wahba, G. (1979) for contin-
uous spline smoothing. Brooks, R. J., Stone, M., Chan, F. Y. and Chan, L.K. (1988)
have shown that GCV can also be used for the Whittaker-Henderson smoothing and
implicitly for the HP filter. The estimate of the smoothing parameter is the one that
minimizes the GCV criterion function

min
α
n−1

n∑
i=1

(
yi − τ̂ i

1− n−1trace (In + αF )−1

)2

, (3.28)

where, in our simulations, τ̂ i and trace(In + αF )−1 are computed for each value of
α = 0.5, 1, 1.5, 2, . . . , 19.5, 20 (a grid of 40 values). Table 1 shows the computation
time in seconds for the GCV method based on the formulae in Corollaries 3.4 and 3.5
with matrices of size m×m and also on the usual inversion formula for (In + αF )−1

of size n× n.
As it can be seen from Table 1, the difference in computation time between our

formulae and the old formula for the HP filter are striking for a grid of only 40 values
for α. For a data set comprising daily observations over two decades (as in Adrian, T.
and Rosenberg, J. (2008) or in Harris, R. D. F., Evarist, S. and Fatih, Y. (2011)), the
old HP formula takes 4626 seconds (one hour and half) to estimate α. The simulations
were run on a very powerful computer: an Intel Xeon CPU 2.67 GHz, 24 GB RAM
and 64-bit OS using Matlab R2012b. The Matlab programs used in this section can
be found here: https://dl.dropboxusercontent.com/u/113649213/our HP.m and here:
https://dl.dropboxusercontent.com/u/113649213/OldHP.m.

12

https://dl.dropboxusercontent.com/u/113649213/OurHPvsOldHP.m
https://dl.dropboxusercontent.com/u/113649213/ourHP.m
https://dl.dropboxusercontent.com/u/113649213/OldHP.m


Table 1: Computation time in seconds for the GCV method for choosing α

n Our HP Old HP
100 0.05 2.25
500 0.81 3.18

1000 5.20 6.92
2000 30.99 104.16
5000 421.88 4626.31

10000 3217.30 40708.54

Even if an economist has data at lower frequency (monthly, quarterly), our formu-
lae from Corollaries 3.4 and 3.5 can also be used to derive analytically the moments
of the HP filtered model variables, which would help to reduce the computation time
in the estimation of DSGE models; see Gorodnichenko, Y. and Ng, S. (2010).

4 A solution to the end-point bias with an appli-

cation to the U.S. GDP

It is well known that the trend estimate of the HP filter for the most recent (and
the first) observations is biased, as indicated for example in Baxter, M. and King,
R. G. (1999); Mise, E., Kim, T.-H. and Newbold, P. (2005); Orphanides, A. and van
Norden, S. (2002). As it can be seen from (1.1), the bias is due to the fact that not
all the τ i’s are treated equally, resulting in higher weights pi,j at the beginning and
end of the sample, i = 1, 2, n− 1, n; j = 1, . . . , n.

The solution proposed in the literature to solve the end-point bias of the HP
filter, is based on augmenting the sample with forecasts from surveys or econometric
models; see Kaiser, R. and Maravall, A. (1999); Mise, E., Kim, T.-H. and Newbold, P.
(2005). However, the resulting estimates of the trend are dependant on the accuracy
of the model forecasts about which consensus may not exist. Given the uncertainty
surrounding such forecasts, there is a risk that end-point biases remain substantial.

In this section we propose a different solution to the end-point bias of the HP
filter. Our solution is to assign a different smoothing parameter, α1, to the end-
weights pn,j, j = 1, . . . , n, in the expression from Corollary 2.1. In order to reduce
the end-point bias, we need α1 > α, since a large smoothing parameter reduces the
weights; see (2.25) and the discussion from the end of Section 2. Note that without
knowing the explicit analytical expression for the weights, it is impossible to use a
different smoothing parameter for each weight; see Corollary 2.1 and equation (A.1)
from the beginning of the proof of Theorem 2.1.

We illustrate our solution on the estimation of the turning points dated by NBER.
Our data consists of seasonally adjusted quarterly U.S. real GDP from 1947:Q1 to
2013:Q2 taken from Philadelphia’s Fed Real-Time Data Research Center (a thor-
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oughly documented data set of 266 observations using a unique vintage of data from
2013:Q3; Croushore, D. and Stark, T. (2001)). Tables 2 and 3 show the NBER reces-
sion dates and the recession dates estimated by the HP filter using the whole sample
of observations, n = 266, with α = 1600 (as suggested by Hodrick, R. and Prescott,
E. (1997)) for all the weights pi,j, i, j = 1, . . . , n (second column); using the sample
recursively with n = 20, 21, . . . , 266 and α = 1600 for all the weights (third column);
and using the sample recursively with n = 20, 21, . . . , 266 and α = 1600 for all the
weights, except pn,j, j = 1, . . . , n, for which the smoothing parameter is α1 = 150, 000
(last column). The estimates of the troughs and peaks by the HP filter are based
on a very standard and widely used rule; see Canova, F. (1999); Wecker, W. (1979);
Zellner, A. and Hong, C. (1991). It defines a trough as a situation where two con-
secutive declines in the cyclical component of the GDP are followed by an increase,
i.e., at time i, ĉi+1 > ĉi < ĉi−1 < ĉi−2. A peak is defined as a situation where two
consecutive increases in the cyclical component of the GDP are followed by a decline,
i.e., at time i, ĉi+1 < ĉi > ĉi−1 > ĉi−2.

Table 2: NBER peak dates and estimated peaks by HP filter

NBER HP full sample HP recursive HP recursive corrected
1953:Q2 1953:Q1 1953:Q1 1953:Q1
1957:Q3 1957:Q1 1956:Q4 1955:Q3
1960:Q2 1960:Q1 1960:Q1 1960:Q1
1969:Q4 1969:Q1 1968:Q2 1968:Q2

1973:Q4 1973:Q2 1973:Q1 1973:Q2

1980:Q1 1978:Q4 1978:Q2 1978:Q4

1981:Q3 1981:Q1 1981:Q1 1981:Q1

1990:Q3 1990:Q1 1987:Q4 1989:Q2

2001:Q1 2000:Q2 1999:Q4 2000:Q2

2007:Q4 2007:Q4 2007:Q3 2007:Q3

As it can be noted from the second column of Tables 2 and 3, the HP filter
based on the full sample is very reliable in identifying all the turning points dated
by NBER. This is the same conclusion as in Canova, F. (1999).3 However, Canova’s
results are based on the full sample of observations and are not affected by the end of
sample bias of the filter, about which policy-makers are more concerned with, given

3Canova, F. (1999) compares the HP filter with many other detrending methods (model-based de-
trending, linear detrending, Beveridge-Nelson decomposition, unobservable components, a frequency
domain procedure introduced by Sims, C. (1974) and its time dimension version, the band-pass fil-
ter, introduced by Baxter, M. and King, R. G. (1999), etc) and concludes that the HP filter and
Baxter and King’s filter are the best in mimicking NBER cycles regardless of the dating rule used.
Moreover, Nilsson, R. and Gyomai, G. (2011) conclude that the HP filter outperforms the filter
proposed by Christiano, L. and Fitzgerald, T. J. (2003) in estimating turning points.
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Table 3: NBER trough dates and estimated troughs by HP filter

NBER HP full sample HP recursive HP recursive corrected
1954:Q2 1954:Q2 1954:Q2
1958:Q2 1958:Q2 1958:Q1 1958:Q1
1961:Q1 1961:Q1 1960:Q4 1960:Q4
1970:Q4 1970:Q4 1970:Q4 1970:Q4
1975:Q1 1975:Q1 1975:Q1 1975:Q1
1980:Q3 1980:Q3 1980:Q3 1980:Q3

1982:Q4 1982:Q4 1982:Q1 1982:Q4

1991:Q1 1991:Q1 1991:Q1 1991:Q1
2001:Q4 2001:Q4 2001:Q4 2001:Q4

2009:Q2 2009:Q2 2009:Q1 2009:Q2

the importance of the more recent observations in indicating the beginning (end)
of a recession. Unfortunately, in the interesting case when the HP filter is applied
recursively with the same smoothing parameter for all the weights, α = 1600, the
estimates of the turning points are very bad, as it can be seen from column three
of Tables 2 and 3.4 If instead we use a different smoothing parameter for the end-
weights, α1 = 150000, the estimates are on average better, as indicated by the shaded
boxes in column 3 of the tables. In fact, in four cases, the corrected recursive HP
filter is able to estimate a peak closer to the NBER peak compared to the recursive
HP filter. Only in one case it does worse than the recursive HP filter (for the NBER
peak in 1957:Q3). Moreover, in two cases, the corrected recursive HP filter is able to
estimate a trough closer to the NBER trough compared to the recursive HP filter.

Our solution of assigning a different smoothing parameter to the end-weights can
be adapted to applications other than the estimation of turning points. For example,
it could be used to reduce the end-point bias in the computation of the moments in
GMM estimation and related statistics; see Christiano, L. and den Haan, W. (1996).
Moreover, given the controversy about the best choice of the smoothing parameter
(Backus, D.K. and Kehoe, P. J. (1992); Baxter, M. and King, R. G. (1999); Giorno,
C.L., Richardson, P., Roseveare, D. and van den Noord, P. (1995); Ravn, M. O. and
Uhlig, H. (2002)), a data dependent method similar to the GCV, but which takes
into account the potential weak dependence in the filtered data (De Jong, R. M. and
Sakarya, N. (2013); King, R. G. and Rebelo, S. T. (1993)) and also aims to reduce
the end-point bias, can be derived based on our formulae for the weights.5

4The end-point bias is not a characteristic of the HP filter only, but also of the Baxter-King and
Christiano-Fitzgerald filters; see Baxter, M. and King, R. G. (1999); Christiano, L. and Fitzgerald,
T. J. (2003); Watson, M. W. (2007).

5Note that the GCV is underestimating the smoothing parameter if the filtered data is weakly
dependant; see Christiano, L. and den Haan, W. (1996).
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5 A methodology for computing the exact weights

of the Whittaker-Henderson filters

The rationale that have led to Theorem 2.1 can be applied to derive the explicit
formula for the weights for the more general filters (1.4) and (1.5). Note that the
explicit solution to (1.4) is given by

τ̂ = (In + αF )−1 y, (5.1)

where
F = Qr −ZZ ′ − PnZZ ′Pn, (5.2)

Pn and Q are defined in (2.3) and (2.2), and Z is a matrix of size n× (r − 1) given
by

Z ′ :=
(
Z ′1 O′n−r,r−1

)
, (5.3)

where Z ′1 is a matrix of size (r− 1)× r and of rank r− 1. For example, for p = 3 we
have

Z ′ :=

( (
3 −3 1
2 −1 0

)
O2,n−3

)
. (5.4)

As in Theorem 2.1, the solution (In+αF )−1 can be expressed in terms of α, n and
the eigenvalues/eigenvectors ofQ only, by applying the Sherman-Morrison-Woodbury
(SMW) formula twice, first to account for PnZZ

′Pn, second to account for ZZ ′; see
Abadir, K. M. and Magnus, J. R. (2005), p.107, where their matrix D is the identity
matrix Ir−1 in our case. The SMW formula reduces the Sherman-Morrison formula
when the rank of ZZ ′ is 1 (for r = 2). To illustrate the SMW in this setting, denote
by A := In + αQr and by C := A− αZZ ′. Then,

(In + αF )−1 = (C − αPnZZ ′Pn)
−1

(5.5)

= C−1 + αC−1PnZ
(
Ir−1 − αZ ′PnC−1PnZ

)−1
Z ′PnC

−1.

This is the SMW applied once. We now apply the SMW formula for C−1,

C−1 = A−1 + αA−1Z
(
Ir−1 − αZ ′A−1Z

)−1
Z ′A−1. (5.6)

Note that the matrices (Ir−1 − αZ ′PnC−1PnZ)
−1

and (Ir−1 − αZ ′A−1Z)
−1

are of
size (r−1)×(r−1). To obtain (Ir−1 − αZ ′A−1Z)

−1
, we can apply a few times either

the SMW formula or the formula for partitioned matrix (Abadir, K. M. and Magnus,
J. R. (2005), p.106) by exploiting the zeros in Z. Simplifications along the lines of
the proof of Theorem 2.1, as for example in (A.3), (A.5), (A.6), (A.7), occur.

To invert A, it is enough to know the eigenvalues of Q (given in (2.4)) in order to
derive the eigenvalues of Qr and functions of them. More exactly, since Q = TΓT
(because eigenvalues in Γ = diag(γ1, · · · , γn) are distinct; see (2.4)), we have that
Qr = TΓrT (Abadir, K. M. and Magnus, J. R. (2005), p.245). Hence A−1 :=
TΛ−1T , where

Λ−1 := diag
(
λ−11 , . . . , λ−1j , . . . , λ−1n

)
, λj = 1 + αγrj , (5.7)
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with γj given in (2.4).
To obtain the exact solution for the filter in (1.5), we have to proceed in the

similar manner described above, and apply SMW formula twice, times the number of
penalty terms, in order to reduce the minimization problem (1.5) to the inversion of
matrices of size (r − 1)× (r − 1), instead of matrices of size n× n, where r << n.

6 Conclusion

In this paper we obtain the exact analytical expression for the weights in the HP
filter, a result that has not been previously derived in the literature. We then use
the expression for the weights to build a fast algorithm that can be implemented in
software. Our algorithm is up to fifty times faster for sample sizes typical in economics.
Moreover, our expression for the weights gives insights about the properties of the
HP filter and we use it to propose a solution to the end-point bias of the filter. We
illustrate the performance of our solution on the estimation of the peaks and troughs
dated by the NBER. We show that our solution for the end-point bias gives better
estimates of the recession dates compared to the usual HP filter. Finally, we show
that our derivations for the weights provide a methodology for finding the exact
weights of the more general Whittaker-Henderson filters of which the HP filter is a
particular case. Other than these applications of our formulae for the weights, our
results can also be used to derive analytically the moments needed in the estimation
of DSGE models; to propose a solution for reducing spurious correlations/cycles and
the problems these induce for inference, and to propose a data-dependent method for
the choice of the smoothing parameter that is valid with weakly dependant detrended
data.

A Appendix section

A.1 Proof of Theorem 2.1

Denote C := QQ and A := In + αC. We apply Sherman-Morrison formula twice:

(In + αF )−1 = (A− αgg′ − αPngg′Pn)−1 (A.1)

= (A− αgg′)−1 + α
(A− αgg′)−1Pngg′Pn(A− αgg′)−1

1− αg′Pn(A− αgg′)−1Png

= A−1 + α
A−1gg′A−1

1− αg′A−1g

+ α

(
A−1 + αA−1gg′A−1

1−αg′A−1g

)
Pngg

′Pn

(
A−1 + αA−1gg′A−1

1−αg′A−1g

)
1− αg′Pn

(
A−1 + αA−1gg′A−1

1−αg′A−1g

)
Png

.

We have A := In + αC = In + αQQ. Since the tridiagonal matrix Q has
distinct eigenvalues given in (2.4), Q can be written as Q := TΓT−1, where Γ :=
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diag
(
γ1, . . . , γj, . . . , γn

)
. Also, QQ = Tdiag

(
γ21, . . . , γ

2
j , . . . , γ

2
n

)
T−1. The typical

element of the matrix T is given in (2.5).

The constant
(

2
n+1

)1/2
=
(∑n

i=1 sin2
(
πi
n+1

))−1/2
guarantees that the eigenvectors

of Q are orthonormal, in which case Q := TΓT ′ = TΓT , by the symmetry of T .
The matrix A has eigenvalues given by (2.7) and the same eigenvectors as Q given

by (2.5). Hence A := TΛT , where Λ is as in (2.6). Hence, A−1 := TΛ−1T .
Denote u := (u1, u2, · · · , un)′, where

uj :=
n∑
s=1

2x1,s − x2,s
λs

xs,j, j = 1, · · · , n, (A.2)

and note that

gg′A−1 :=

 2u
−u
On−2,n

 , Pngg
′PnA

−1 :=

 On−2,n
−Pnu
2Pnu


which follows by noting that xi,j = xj,i and sin

(
(n−1)jπ
n+1

)
sin
(
jπ
n+1

)
= sin

(
2jπ
n+1

)
sin
(
njπ
n+1

)
.

The matrices gg′A−1, Pngg
′PnA

−1 and Pngg
′PnA

−1gg′A−1 have only one nonzero
eigenvalue given by

g′A−1g = g′PnA
−1Png = 2u1 − u2 =

n∑
s=1

(2x1,s − x2,s)2

λs
. (A.3)

g′PnA
−1gg′A−1Png = (2un − un−1)2 (A.4)

=

(
n∑
s=1

(2x1,s − x2,s)2

λs
(−1)s−1

)2

,

by noting that xs,n = xs,1 (−1)s−1 and xs,n−1 = xs,2 (−1)s−1 . Hence

(In + αF )−1 = A−1 +
αA−1gg′A−1

1− α (2u1 − u2)

+
α (1− α (2u1 − u2))A−1Pngg′PnA−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

+
α2A−1 (Pngg

′PnA
−1gg′ + gg′A−1Pngg

′Pn)A−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

+
α2A−1gg′A−1Pngg

′PnA
−1gg′A−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2
α

1− α (2u1 − u2)
.

Notice that

gg′A−1Pngg
′PnA

−1gg′ = (2un − un−1)2gg′, (A.5)
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gg′A−1Pngg
′Pn = −(2un − un−1)gg′Pn, (A.6)

Pngg
′PnA

−1gg′ = −(2un − un−1)Pngg′. (A.7)

Hence

(In + αF )−1 = A−1 +
αA−1gg′A−1

1− α (2u1 − u2)
+
α (1− α (2u1 − u2))A−1Pngg′PnA−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

−α
2(2un − un−1)A−1 (Pngg

′ + gg′Pn)A−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

+
α

1− α (2u1 − u2)
α2(2un − un−1)2A−1gg′A−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

= A−1 +
α (1− α (2u1 − u2))A−1 (gg′ + Pngg

′Pn)A−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

−α
2(2un − un−1)A−1 (Pngg

′ + gg′Pn)A−1

(1− α (2u1 − u2))2 − α2(2un − un−1)2

=: A−1 + TΛ−1HΛ−1T ,

where
H := T [(gg′ + Pngg

′Pn)w1 + (Pngg
′ + gg′Pn)w2]T ,

w1 :=
α (1− α (2u1 − u2))

(1− α (2u1 − u2))2 − α2(2un − un−1)2
,

w2 := − α2(2un − un−1)
(1− α (2u1 − u2))2 − α2(2un − un−1)2

,

with u1, u2, un−1, un given in (A.2).
It is easy to compute Tgg′T ,TPngg

′PnT ,Tgg
′PnT ,TPngg

′T , typical elements
of which for row i and column j are:

(2xi,1 − xi,2) (2x1,j − x2,j) ,
(2xi,n − xi,n−1) (2xn,j − xn−1,j) ,
(2xi,1 − xi,2) (2xn,j − xn−1,j) ,
(2xi,n − xi,n−1) (2x1,j − x2,j) ,

respectively, for i, j = 1, . . . , n. Hence the typical element of K := Λ−1HΛ−1 for row
i and column j is

hi,j :=
(2xi,1 − xi,2) (2x1,j − x2,j)w1 + (2xi,n − xi,n−1) (2xn,j − xn−1,j)w1

λiλj

+
(2xi,1 − xi,2) (2xn,j − xn−1,j)w2 + (2xi,n − xi,n−1) (2x1,j − x2,j)w2

λiλj
.
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For i = j

hi,i :=
(2xi,1 − xi,2)2w1 + (2xi,n − xi,n−1)2w1 + 2 (2xi,1 − xi,2) (2xi,n − xi,n−1)w2

λ2i
.

Note that xi,n = xi,1 (−1)i−1, xi,n−1 = xi,2 (−1)i−1 , xn,j = x1,j (−1)j−1 and xn−1,j =
x2,j (−1)j−1 . Hence

hi,j :=
(2xi,1 − xi,2) (2x1,j − x2,j)w1 + (2xi,1 − xi,2) (2x1,j − x2,j) (−1)i−1 (−1)j−1w1

λiλj

+
(2xi,1 − xi,2) (2x1,j − x2,j) (−1)j−1w2 + (2xi,1 − xi,2) (2x1,j − x2,j) (−1)i−1w2

λiλj

=
(2xi,1 − xi,2) (2x1,j − x2,j)

λiλj

[
w1

[
1 + (−1)i−1 (−1)j−1

]
+ w2

[
(−1)j−1 + (−1)i−1

]]
=

(2xi,1 − xi,2) (2x1,j − x2,j)
λiλj

[
1 + (−1)i+j−2

] [
w1 + (−1)1−j w2

]
=


0 , if i+ j odd,
2 (2xi,1 − xi,2) (2x1,j − x2,j)λ−1i λ−1j [w1 − w2] , if i+ j even and j even,
2 (2xi,1 − xi,2) (2x1,j − x2,j)λ−1i λ−1j [w1 + w2] , if i+ j even and j odd.

For i = j

hi,i :=
(2xi,1 − xi,2)2

λ2i

[
1 + (−1)2(i−1)

] [
w1 + (−1)1−iw2

]
= 2

(2xi,1 − xi,2)2

λ2i

[
w1 + (−1)1−iw2

]
=

{
2 (2xi,1 − xi,2)2 λ−2i [w1 + w2] , if i odd,

2 (2xi,1 − xi,2)2 λ−2i [w1 − w2] , if i even.

We also need

w1 − w2 =
α (1− α (2u1 − u2)) + α2(2un − un−1)
(1− α (2u1 − u2))2 − α2(2un − un−1)2

=
α (1− α (2u1 − u2)) + α2(2un − un−1)

(1− α (2u1 − u2) + α(2un − un−1)) (1− α (2u1 − u2)− α(2un − un−1))
=

α

1− α
∑n

s=1 (2x1,s − x2,s)2 λ−1s
[
1− (−1)s−1

] ,
w1 + w2 =

α

1− α (2u1 − u2) + α(2un − un−1)
=

α

1− α
∑n

s=1 (2x1,s − x2,s)2 λ−1s
[
1 + (−1)s−1

] .
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Hence,

K :=
2αK1

1− α
∑n

s=1 (2x1,s − x2,s)2 λ−1s
[
1 + (−1)s−1

]
+

2αK2

1− α
∑n

s=1 (2x1,s − x2,s)2 λ−1s
[
1− (−1)s−1

] ,
with K1 and K2 n × n matrices with typical element given by (2.10), as described
on p.5. Finally,

(In + αF )−1 = TΛ−1T +
2α

1− 2α
n∑

j=1,odd

(2x1,j − x2,j)2 λ−1j
TK1T

+
2α

1− 2α
n∑

j=1,even

(2x1,j − x2,j)2 λ−1j
TK2T .

Q.E.D.

A.2 Proof of Corollary 2.2

The proof follows by using the fact that the eigenvalues defined in (2.7) can also be
written as

λs = 1 + 16α

(
sin

(
sπ

2(n+ 1)

))4

, s = 1, . . . , n.

Using this, we have

n∑
s=1

(2x1,s − x2,s)2

λs
=

2

n+ 1

n∑
s=1

16
(

sin
(

sπ
2(n+1)

))4 (
sin( sπ

n+1
)
)2

1 + 16α
(

sin
(

sπ
2(n+1)

))4 .

Let r = s/(n + 1), (2.21) follows by Lemma 3 of De Jong, R. M. and Sakarya, N.
(2013). Also note that

n∑
s=1, even

(2x1,s − x2,s)2

λs
=

2

n+ 1

[n/2]∑
s=1

16
(

sin
(

2sπ
2(n+1)

))4 (
sin( 2sπ

n+1
)
)2

1 + 16α
(

sin
(

2sπ
2(n+1)

))4 .

Let r = s/(n + 1). Then the result in (2.20) for s even, follows by Lemma 3 of De
Jong, R. M. and Sakarya, N. (2013). For s odd, we have

n∑
s=1, odd

(2x1,s − x2,s)2

λs
=

2

n+ 1

[n−1
2 ]∑

s=0

16
(

sin
(

(2s+1)π
2(n+1)

))4 (
sin( (2s+1)π

n+1
)
)2

1 + 16α
(

sin
(

(2s+1)π
2(n+1)

))4 ,

where by Lemma 3 of De Jong, R. M. and Sakarya, N. (2013) and with r = (s +
1/2)/(n + 1), (2.20) follows. The same type of arguments can be used to show the
result in (2.22). Q.E.D
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