Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice
 
 

Joanna Dyczkowska , Andrea Szirmai Madarasine & Adriana Tiron-Tud or, Development of Integrated Reporting in the SME Sector, Case Studies from European Countries, Springer, 2021
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB | Info COVID-19
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Contact | Harta Site | Viziteaza FSEGA

Kristály, A. (2022) Advances in Calculus of Variations [Q1]

Autor: Ovidiu Ioan Moisescu

Publicat: 24 Iulie 2022


Kristály, A. (2022) New features of the first eigenvalue on negatively curved spaces. Advances in Calculus of Variations, 15 (3), 475-495.

DOI: https://doi.org/10.1515/acv-2019-0103

✓ Publisher: De Gruyter
✓ Categories: Mathematics; Mathematics, Applied
✓ Article Influence Score (AIS): 1.542 (2020) / Q1 in all categories

Abstract: The paper is devoted to the study of fine properties of the first eigenvalue on negatively curved spaces. First, depending on the parity of the space dimension, we provide asymptotically sharp harmonic-type expansions of the first eigenvalue for large geodesic balls in the model n-dimensional hyperbolic space, complementing the results of Borisov and Freitas (2017), Hurtado, Markvorsen and Palmer (2016) and Savo (2008); in odd dimensions, such eigenvalues appear as roots of an inductively constructed transcendental equation. We then give a synthetic proof of Cheng’s sharp eigenvalue comparison theorem in metric measure spaces satisfying a Bishop–Gromov-type volume monotonicity hypothesis. As a byproduct, we provide an example of simply connected, non-compact Finsler manifold with constant negative flag curvature whose first eigenvalue is zero; this result is in a sharp contrast with its celebrated Riemannian counterpart due to McKean (1970). Our proofs are based on specific properties of the Gaussian hypergeometric function combined with intrinsic aspects of the negatively curved smooth/non-smooth spaces.



inapoi la stiri   vezi evenimentele   home


       Copyright © 14-08-2022 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta