Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Kristály, A. & Zhao, W. (2022) Journal de Mathématiques Pures et Appliquées [Matematică, Q1]

Autor: Ovidiu Ioan Moisescu

Publicat: 28 Ianuarie 2022


Kristály, A. & Zhao, W. (2022) On the geometry of irreversible metric-measure spaces: Convergence, stability and analytic aspects. Journal de Mathématiques Pures et Appliquées, 158, 216-292.

DOI: https://doi.org/10.1016/j.matpur.2021.11.006

✓ Publisher: Elsevier
✓ Categories: Mathematics; Mathematics, Applied
✓ Article Influence Score (AIS): 2.066 (2022) / Q1 in all categories

Journal ranked:
#13 in Mathematics, Applied

Abstract: The paper is devoted to the study of Gromov-Hausdorff convergence and stability of irreversible metric-measure spaces, both in the compact and noncompact cases. While the compact setting is mostly similar to the reversible case developed by J. Lott, K.-T. Sturm and C. Villani, the noncompact case provides various surprising phenomena. Since the reversibility of noncompact irreversible spaces might be infinite, it is motivated to introduce a suitable nondecreasing function that bounds the reversibility of larger and larger balls. By this approach, we are able to prove satisfactory convergence/stability results in a suitable – reversibility depending – Gromov-Hausdorff topology. A wide class of irreversible spaces is provided by Finsler manifolds, which serve to construct various model examples by pointing out genuine differences between the reversible and irreversible settings. We conclude the paper by proving various geometric and functional inequalities (as Brunn-Minkowski, Bishop-Gromov, log-Sobolev and Lichnerowicz inequalities) on irreversible structures.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta