Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Kristály, A. (2024) Calculus of Variations and Partial Differential Equations [Matematică, Q1]

Autor: Cristina Alexandrina Stefanescu

Publicat: 20 August 2024


Kristály, A. (2024) Sharp Sobolev inequalities on noncompact Riemannian manifolds with Ric >= 0 via optimal transport theory. Calculus of Variations and Partial Differential Equations, 63, 200.

DOI: https://doi.org/10.1007/s00526-024-02810-9

✓ Publisher: Springer
✓ Categories: Mathematics, Applied; Mathematics
✓ Article Influence Score (AIS): 1.736 (2023) / Q1 in all categories.

Abstract: In their seminal work, Cordero-Erausquin, Nazaret and Villani (Adv Math 182(2):307-332, 2004) proved sharp Sobolev inequalities in Euclidean spaces via Optimal Transport, raising the question whether their approach is powerful enough to produce sharp Sobolev inequalities also on Riemannian manifolds. By using L 1 -optimal transport approach, the compact case has been successfully treated by Cavalletti and Mondino (Geom Topol 21:603-645, 2017), even on metric measure spaces verifying the synthetic lower Ricci curvature bound. In the present paper we affirmatively answer the above question for noncompact Riemannian manifolds with non-negative Ricci curvature; namely, by using Optimal Transport theory with quadratic distance cost, sharp L p -Sobolev and L p -logarithmic Sobolev inequalities (both for p > 1 and p = 1) are established, where the sharp constants contain the asymptotic volume ratio arising from precise asymptotic properties of the Talentian and Gaussian bubbles, respectively. As a byproduct, we give an alternative, elementary proof to the main result of do Carmo and Xia (Math 140:818-826, 2004) and subsequent results, concerning the quantitative volume non-collapsing estimates on Riemannian manifolds with non-negative Ricci curvature that support Sobolev inequalities.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta