Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice

Marko Sarstedt, Monika Imschloss & Susanne Adler, Multisensory Design of Retail Environments - Vision, Sound, and Scent, Springer, 2024
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Cui, N.; Kristály, A. & Zhao, W. (2025) Journal of Geometric Analysis [Matematică, Q1]

Autor: Cristina Alexandrina Stefanescu

Publicat: 10 Octombrie 2025


Cui, N.; Kristály, A. & Zhao, W. (2025) Sharp Hardy Inequalities Involving Distance Functions From Submanifolds of Riemannian Manifolds. Journal of Geometric Analysis, 35, 379.

DOI: https://doi.org/10.1007/s12220-025-02213-y

✓ Publisher: Springer
✓ Categories: Mathematics
✓ Article Influence Score (AIS): 0.950 (2024) / Q1

Abstract: We establish various Hardy inequalities involving the distance function from submanifolds of Riemannian manifolds, where the natural weights are expressed in terms of bounds of the mean curvature of the submanifold and sectional/Ricci curvature of the ambient Riemannian manifold. Our approach is based on subtle Heintze–Karcher-type Laplace comparisons of the distance function and on a D’Ambrosio–Dipierro-type weak divergence formula for suitable vector fields, providing Barbatis–Filippas–Tertikas-type Hardy inequalities in the curved setting. Under very mild assumptions, we also establish the sharpness and non-existence of extremal functions within the Hardy inequalities and – depending on the geometry of the ambient manifold – their extensibility to various function spaces. Several examples are provided by showing the applicability of our approach; in particular, well-known Hardy inequalities appear as limit cases of our new inequalities.



inapoi la stiri   vezi evenimentele   home


       Copyright © 20-10-2025 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta