Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Barbosa, E. & Kristály, A. (2018) Bulletin of the London Mathematical Society [Matematică, Q1]

Autor: Ovidiu Ioan Moisescu

Publicat: 24 Noiembrie 2020


Barbosa, E. & Kristály, A. (2018) Second‐order Sobolev inequalities on a class of Riemannian manifolds with nonnegative Ricci curvature. Bulletin of the London Mathematical Society, 50(1), 35-45.

DOI: https://doi.org/10.1112/blms.12107

✓ Publisher: Wiley
✓ Web of Science Core Collection: Science Citation Index Expanded
✓ Categories: Mathematics
✓ Article Influence Score (AIS): 1.077 (2018) / Q1

Abstract: Let (M,g) be an n-dimensional complete open Riemannian manifold with nonnegative Ricci curvature verifying gn-50, where g is the Laplace-Beltrami operator on (M,g) and is the distance function from a given point. If (M,g) supports a second-order Sobolev inequality with a constant C>0 close to the optimal constant K0 in the second-order Sobolev inequality in Rn, we show that a global volume noncollapsing property holds on (M,g). The latter property together with a Perelman-type construction established by Munn (J. Geom. Anal. (2010) 723-750) provide several rigidity results in terms of the higher order homotopy groups of (M,g). Furthermore, it turns out that (M,g) supports the second-order Sobolev inequality with the constant C=K0 if and only if (M,g) is isometric to the Euclidean space Rn.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta