Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Balogh, Z.M. & Kristály, A. (2018) Advances in Mathematics [Matematică, Q1]

Autor: Ovidiu Ioan Moisescu

Publicat: 24 Noiembrie 2020


Balogh, Z.M. & Kristály, A. (2018) Equality in Borell–Brascamp–Lieb inequalities on curved spaces. Advances in Mathematics, 339, 453-494.

DOI: https://doi.org/10.1016/j.aim.2018.09.041

✓ Publisher: Elsevier
✓ Web of Science Core Collection: Science Citation Index Expanded
✓ Categories: Mathematics
✓ Article Influence Score (AIS): 1.976 (2018) / Q1

Abstract: By using optimal mass transportation and a quantitative Holder inequality, we provide estimates for the Borell-Brascamp-Lieb deficit on complete Riemannian manifolds. Accordingly, equality cases in Borell-Brascamp-Lieb inequalities (including Brunn-Minkowski and Prekopa-Leindler inequalities) are characterized in terms of the optimal transport map between suitable marginal probability measures. These results provide several qualitative applications both in the flat and non-flat frameworks. In particular, by using Caffarelli's regularity result for the Monge-Ampere equation, we give a new proof of Dubuc's characterization of the equality in Borell-Brascamp-Lieb inequalities in the Euclidean setting. When the n-dimensional Riemannian manifold has Ricci curvature Ric(M) >= (n - 1)k for some k is an element of R, it turns out that equality in the Borell-Brascamp-Lieb inequality is expected only when a particular region of the manifold between the marginal supports has constant sectional curvature k. A precise characterization is provided for the equality in the Lott-Sturm-Villani-type distorted Brunn-Minkowski inequality on Riemannian manifolds. Related results for (not necessarily reversible) Finsler manifolds are also presented.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta