Kajántó, S. & Kristály, A. (2021) Journal of Geometric Analysis [Matematică, Q2]
Autor:
Ovidiu Ioan Moisescu
Publicat:
16 Aprilie 2021
Kajántó, S. & Kristály, A. (2021) Unexpected Behaviour of Flag and S-Curvatures on the Interpolated Poincaré Metric. Journal of Geometric Analysis, 31, 10246-10262.
DOI: https://doi.org/10.1007/s12220-021-00644-x
✓ Publisher: Springer
✓ Web of Science Core Collection: Science Citation Index Expanded
✓ Categories: Mathematics
✓ Article Influence Score (AIS): 0.948 (2020) / Q2
Abstract: We endow the disc D={(x1,x2)∈R2:x21+x22<4} with a Poincaré-type Randers metric Fλ, λ∈[0,1] that ’linearly’ interpolates between the usual Riemannian Poincaré disc model (λ=0, having constant sectional curvature −1 and zero S-curvature) and the Finsler–Poincaré metric (λ=1, having constant flag curvature −1/4 and constant S-curvature with isotropic factor 1/2), respectively. Contrary to our intuition, we show that when λ↗1, both the flag and normalized S-curvatures of the metric Fλ blow up close to ∂D for some particular choices of the flagpoles.
inapoi la stiri
vezi evenimentele
home