Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Borrelli, A., Giantesio, G., Patria, M.C., Roşca, N.C., Roşca, A.V., & Pop, I. (2017) Communications in Nonlinear Science and Numerical Simulation [Matematică, Q2]

Autor: Ovidiu Ioan Moisescu

Publicat: 02 Septembrie 2021


Borrelli, A., Giantesio, G., Patria, M.C., Roşca, N.C., Roşca, A.V., & Pop, I. (2017) Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid. Communications in Nonlinear Science and Numerical Simulation, 43, 1-13.

DOI: https://doi.org/10.1016/j.cnsns.2016.06.022

✓ Publisher: Elsevier
✓ Categories: Mechanics; Physics, Fluids & Plasmas; Mathematics, Interdisciplinary Applications; Mathematics, Applied
✓ Article Influence Score (AIS): 0.859 (2017) / Q1 in Mechanics; Physics, Fluids & Plasmas; Q2 in Mathematics, Interdisciplinary Applications; Mathematics, Applied

Abstract: This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck–Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta