Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice
 
 

Joanna Dyczkowska , Andrea Szirmai Madarasine & Adriana Tiron-Tud or, Development of Integrated Reporting in the SME Sector, Case Studies from European Countries, Springer, 2021
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB | Info COVID-19
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Contact | Harta Site | Viziteaza FSEGA

Balogh, Z.M. & Kristály, A. (In press) Mathematische Annalen [Q1]

Autor: Ovidiu Ioan Moisescu

Publicat: 20 Martie 2022


Balogh, Z.M. & Kristály, A. (In press) Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature. Mathematische Annalen.

DOI: https://doi.org/10.1007/s00208-022-02380-1

✓ Publisher: Springer
✓ Categories: Mathematics
✓ Article Influence Score (AIS): 1.876 (2020) / Q1

Abstract: By using optimal mass transport theory we prove a sharp isoperimetric inequality in CD(0,N) metric measure spaces assuming an asymptotic volume growth at infinity. Our result extends recently proven isoperimetric inequalities for normed spaces and Riemannian manifolds to a nonsmooth framework. In the case of n-dimensional Riemannian manifolds with nonnegative Ricci curvature, we outline an alternative proof of the rigidity result of Brendle (Comm Pure Appl Math 2021:13717, 2021). As applications of the isoperimetric inequality, we establish Sobolev and Rayleigh-Faber-Krahn inequalities with explicit sharp constants in Riemannian manifolds with nonnegative Ricci curvature; here we use appropriate symmetrization techniques and optimal volume non-collapsing properties. The equality cases in the latter inequalities are also characterized by stating that sufficiently smooth, nonzero extremal functions exist if and only if the Riemannian manifold is isometric to the Euclidean space.



inapoi la stiri   vezi evenimentele   home


       Copyright © 10.2013 FSEGA
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta